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Abstract

A Bely̆ı map β : P1(C)→ P1(C) is a rational function with at most three
critical values; we may assume these values are {0, 1, ∞}. A Dessin
d’Enfant is a planar bipartite graph obtained by considering the preim-
age of a path between two of these critical values, usually taken to be the
line segment from 0 to 1. Such graphs can be drawn on the sphere by
composing with stereographic projection: β−1([0, 1]

)
⊆ P1(C) ' S2(R).

Replacing P1 with an elliptic curve E, there is a similar definition of a
Bely̆ı map β : E(C) → P1(C). Since E(C) ' T2(R) is a torus, we
call (E, β) a toroidal Bely̆ı pair. The corresponding Dessin d’Enfant
can be drawn on the torus by composing with an elliptic logarithm:
β−1([0, 1]

)
⊆ E(C) ' T2(R).

This project seeks to create software which will compute (i) Bely̆ı pairs
(X, β) for either X = P1(C) ' S2(R) or X = E(C) ' T2(R), (ii)
their corresponding Dessins d’Enfant, and (iii) their monodromy groups.
There is preliminary software which partially does this in Mathematica;
this project seeks to port and expand the code in Sage. This software
would allow individuals to explore the properties of Bely̆ı maps and their
Dessins d’Enfants.

This work is part of PRiME (Purdue Research in Mathematics Expe-
rience) with Chineze Christopher, Robert Dicks, Gina Ferolito, Joseph
Sauder, and Danika Van Niel with assistance by Edray Goins and Ab-
hishek Parab.

Bely̆ı Maps

A Bely̆ı map β : X → P1(C) is a morphism from a compact, connected
Riemann surface X which is unramified away from {0, 1, ∞}. Using the
Riemann-Roch Theorem, we can and always do assume the Riemann surface
X is a projective variety. This means there are homogeneous polynomials
f, p, q such that X : f (x, y) = 0 and β = p/q. In particular, β must be a
non-constant rational function, so the sets B = β−1(0), W = β−1(1), and
F = β−1(∞) are each finite.

Dessin d’Enfants
ADessin d’Enfant∆ is a bipartite graph of genus g which can be embedded
on a compact, connected Riemann suface X without crossings. Denoting B
as the collection of “black” vertices, W as the collection of “white” vertices,
and F as the collection of (midpoints of) faces, the Euler characteristic asserts
that N = |B|+ |W |+ |F |+

(
2 g− 2

)
is the number of edges of such a graph.

Monodromy Groups

A Monodromy Group is a triple (σ0, σ1, σ∞) of permutations in a sym-
metric group SN on N letters which satisfies σ0 ◦σ1 ◦σ∞ = 1. In particular,
the group G = 〈σ0, σ1, σ∞〉 generated by them is a subgroup of SN .

Degree Sequences
A multiset of three multisets of positive integers

D =
{{

eP
∣∣P ∈ B}, {eP ∣∣P ∈ W}, {eP ∣∣P ∈ F}}

is said to be a Degree Sequence if there are nonnegative integers N and
g such that

N =
∑
P∈B

eP =
∑
P∈W

eP =
∑
P∈F

eP = |B| + |W | + |F | +
(
2 g − 2

)
.

It follows from the Riemann-Hurwitz Genus formula that this relation is a
necessary condition if D is to be associated to a Bely̆ı map β : X → P1(C)
for a compact, connected Riemann surface X of genus g. In particular, D is
a multiset of three partitions of N .

Bely̆ı Map / Dessin d’Enfant / Monodromy
Explorer

For each of the four objects above, find effective algorithms to compute all
other three. That is, find effective algorithms for the following 12 arrows.

(1) Bely̆ı Maps

(1→3)
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��

(1→4)





(2) Dessin d’Enfants
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(3) Monodromy Groups
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(4) Degree Sequences
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There is preliminary software which partially does this in Mathematica, al-
though we wish to port this to Sage.

(1) From Bely̆ı Maps . . .

(2) . . . To Dessin d’Enfants. Choose a small ε > 0, and consider the
finite set

∆ =
b⋃

a=0

{
(x : y : 1) ∈ P2(C)

∣∣∣∣ f (x, y) = b p(x, y)− a q(x, y) = 0
}

≈ β−1([0, 1]
)

in terms of the positive integer b = b1/εc. Then ∆ ↪→ X is the Dessin
d’Enfant for β.

(3) . . . To Monodromy Groups. Fix y0 ∈ P1(C) different from 0, 1, ∞;
and define β−1(y0) =

{
P1, P2, . . . , PN

}
. We construct 2N functions

via the differential equations
dγ̃

(i)
0
dt

= 2 π
√
−1 p q

q
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− p

(
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∂y
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)
−∂f∂y

+∂f
∂x


γ̃

(i)
0 (0) = Pi
dγ̃

(i)
1
dt

= 2 π
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−1 (p− q) q
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(i)
1 (0) = Pi

Each system has a unique solution. Now compute the triple (σ0, σ1, σ∞)
in terms of the permutations σ0, σ1, σ∞ ∈ SN which satisfy the relations

γ̃
(i)
0 (1) = Pσ0(i), γ̃

(i)
1 (1) = Pσ1(i), and σ∞ = σ−1

1 ◦ σ−1
0 .

(4) . . . To Degree Sequences. Once we have the monodromy group
(σ0, σ1, σ∞), we can compute the Degree sequence D as in (3→ 4).

(2) From Dessin d’Enfants . . .

(1) . . . To Bely̆ı Maps. Starting with a Dessin d’Enfant, we compute its
monodromy group as in (2→ 3). John Voight and others [8], [11] have
code which computes Bely̆ı maps from a given monodromy in (3→ 1).

(3) . . . To Monodromy Groups. Label the edges from 1 through N .
Since the compact, connected surface X is oriented, read off the labels
counter-clockwise of the edges incident to each vertex P ∈ B (P ∈ W ,
respectively) to find the integers BP,1, BP,2, . . . , BP,eP
(WP,1, WP,2, . . . , WP,eP , respectively). Then the permutations

σ0 =
∏
P∈B

(
BP,1 BP,2 · · · BP,eP

)
σ1 =

∏
P∈W

(
WP,1 WP,2 · · · WP,eP

)
σ∞ = σ−1

1 ◦ σ−1
0

form the desired triple (σ0, σ1, σ∞) which satisfies σ0 ◦ σ1 ◦ σ∞ = 1.
Mark van Hoeij [5], [6] has code which does this very quickly.

(4) . . . To Degree Sequences. Once we have the monodromy group
(σ0, σ1, σ∞), we compute the Degree sequence D as in (3→ 4).

(3) From Monodromy Groups . . .

(1) . . . To Bely̆ı Maps. John Voight and his graduate students [8], [11]
have this implemented this step.

(2) . . . To Dessin d’Enfants. Express the three given permutations as a
product of disjoint cycles:

σ0 =
∏
P∈B

(
BP,1 BP,2 · · · BP,eP

)
σ1 =

∏
P∈W

(
WP,1 WP,2 · · · WP,eP

)
σ∞ =

∏
P∈F

(
FP,1 FP,2 · · · FP,eP

)
Place |B| vertices P on X and color them “black”, then draw eP edges
adjacent to each P ∈ B. Going counter-clockwise, label these edges the
integers BP,1, BP,2, . . . , BP,eP . Similarly, place |W | vertices P on X
and color them “white”, then draw eP edges adjacent to each P ∈ W .
Going counter-clockwise, label these edges the integers
WP,1, WP,2, . . . , WP,eP . Connect the edges with the same integer label,
then move the vertices P ∈ B ∪W as necessary so that there are |F |
faces. This is implemented in Sage.

(4) . . . To Degree Sequences. Express the three given permutations as a
product of disjoint cycles as above. The desired degree sequence is that
multiset formed by the lengths of the cycles, that is,
D =

{{
eP
∣∣P ∈ B}, {eP ∣∣P ∈ W}, {eP ∣∣P ∈ F}}.
(4) From Degree Sequences . . .

(1) . . . To Bely̆ı Maps. Compute the monodromy group as in (4→ 3).
Then compute the Bely̆ı map as in (3→ 1).

(2) . . . To Dessin d’Enfants. Once we have the monodromy group as in
(4→ 3), then we can compute the Dessin d’Enfant as in (3→ 2).

(3) . . . To Monodromy Groups. Search through all triples (σ0, σ1, σ∞)
of permutations in a symmetric group SN which are the product of
disjoint cycles as above and which satisfies σ0 ◦ σ1 ◦ σ∞ = 1.

Dessin Explorer
http://www.math.purdue.edu/~egoins/notes/dessin_explorer.cdf
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