U N I V E R S I T Y
Creating a "Dessin Explorer" for Toroidal Belyī Pairs
Joseph Sauder
Purdue Research in Mathematics Experience (PRiME)
0

Belyı̆ Maps

A Belyı̆ map $\beta: X \rightarrow \mathbb{P}^{1}(\mathbb{C})$ is a morphism from a compact, connected Riemann surface X which is unramified away from $\{0,1, \infty\}$. Using the X is a proiective variety. This means there are homogeneous polynomials f, p, q such that $X: f(x, y)=0$ and $\beta=p / q$. In particular, β must be a non-constant rational function, so the sets $B=\beta^{-1}(0), W=\beta^{-1}(1)$, and $F=\beta^{-1}(\infty)$ are each finite.

> Dessin d'Enfants

A Dessin d'Enfant Δ is a bipartite graph of genus g which can be embedded on a compact, connected Riemann suface X without crossings. Denoting B as the collection of "black" vertices, W as the collection of "white" vertices and F as the collection of (midpoints of) faces, the Euler characteristic asserts.
that $N=|B|+|W|+|F|+(2 g-2)$ is the number of edges of such a graph.

> Monodromy Groups

A Monodromy Group is a triple ($\sigma_{0}, \sigma_{1}, \sigma_{\infty}$) of permutations in a symmetric group S_{N} on N letters which satisfies $\sigma_{0} \circ \sigma_{1} \circ \sigma_{\infty}=1$. In particular the group $G=\left\langle\sigma_{0}, \sigma_{1}, \sigma_{\infty}\right\rangle$ generated by them is a subgroup of S_{S}.

Degree Sequences
A multiset of three multisets of positive integers

$$
\mathcal{D}=\left\{\left\{e_{P} \mid P \in B\right\},\left\{e_{P} \mid P \in W\right\},\left\{e_{P} \mid P \in F\right\}\right\}
$$

is said to be a Degree Sequence if there are nonnegative integers N and g such that

$$
N=\sum_{P \in B} e_{P}=\sum_{P \in W} e_{P}=\sum_{P \in F} e_{P}=|B|+|W|+|F|+(2 g-2) .
$$ It follows from the Riemann-Hurwitz Genus formula that this relation is a

necessary condition if \mathcal{D} is to be associated to a Belyri map $\beta \cdot X \rightarrow \mathbb{P}^{1}(\mathbb{C})$ for a compact, connected Riemann surface X of genus g. In particular, \mathcal{D} is a multiset of three partitions of N.

Belyĭ Map / Dessin d'Enfant / Monodromy
Explorer
For each of the four objects above, find effective algorithms to compute all For each of the four inser
other three. That is, find effective algorithms for the following 12 arrows.

There is preliminary software which partially does this in Mathematica, although we wish to port this to Sage.
(1) From Belyĭ Maps
\ldots To Dessin d'Enfants. Choose a small $\varepsilon>0$, and consider the finite set

$$
\Delta=\bigcup_{a=0}^{b}\left\{(x: y: 1) \in \mathbb{P}^{2}(\mathbb{C}) \mid f(x, y)=b p(x, y)-a q(x, y)=0\right\}
$$ $\approx \beta^{-1}([0,1])$

in terms of the positive integer $b=\lfloor 1 / \varepsilon\rfloor$. Then $\Delta \hookrightarrow X$ is the Dessin d^{\prime} Enfant for β.
(3) \ldots To Monodromy Groups. Fix $y_{0} \in \mathbb{P}^{1}(\mathbb{C})$ different from $0,1, \infty$ and define $\beta^{-1}\left(y_{0}\right)=\left\{P_{1}, P_{2}, \ldots, P_{N}\right\}$. We construct $2 N$ functions via the differential equations

$$
\left\{\frac{d \widehat{\gamma}_{0}^{(i)}}{d t}=\frac{2 \pi \sqrt{-1} p q}{q\left(\frac{\partial f}{\partial x} \frac{\partial p}{\partial y}-\frac{\partial f}{\partial y} \frac{\partial p}{\partial x}\right)-p\left(\frac{\partial f}{\partial x} \frac{\partial q}{\partial y}-\frac{\partial f}{\partial y} \frac{\partial q}{\partial x}\right)}\left[\begin{array}{c}
-\frac{\partial f}{\partial y} \\
+\frac{\partial f}{\partial x}
\end{array}\right]\right.
$$

$$
\begin{aligned}
& \left\{\tilde{\gamma}_{0}^{l(t)}(0)=P_{i}\right. \\
& \left\{\begin{array}{l}
\frac{d \tilde{\gamma}_{1}^{(i)}}{d t}=\frac{2 \pi \sqrt{-1}(p-q) q}{q\left(\frac{\partial f}{\partial x} \frac{\partial p}{\partial y}-\frac{\partial f}{\partial y} \frac{\partial p}{\partial x}\right)-p\left(\frac{\partial f}{\partial x} \frac{\partial q}{\partial y}-\frac{\partial f}{\partial y} \frac{\partial q}{\partial x}\right)}\left[\begin{array}{c}
-\frac{\partial f}{\partial y} \\
+\frac{\partial f}{\partial x}
\end{array}\right]
\end{array}\right.
\end{aligned}
$$

$$
\tilde{\gamma}_{1}^{(i)}(0)=P_{i}
$$

Each system has a unique solution. Now compute the triple ($\sigma_{0}, \sigma_{1}, \sigma_{\infty}$

$$
\tilde{\gamma}_{0}^{(i)}(1)=P_{\sigma_{0}(i)}, \quad \tilde{\gamma}_{1}^{(i)}(1)=P_{\sigma_{1}(i)}, \quad \text { and } \quad \sigma_{\infty}=\sigma_{1}^{-1} \circ \sigma_{0}^{-1}
$$

4) \ldots To Degree Sequences. Once we have the monodromy group $\left.\widetilde{\sigma}_{0}, \sigma_{1}, \sigma_{\infty}\right)$, we can compute the Degree sequence \mathcal{D} as in $(3 \rightarrow 4)$.

(2) From Dessin d'Enfants

(1) \ldots To Belyĭ Maps. Starting with a Dessin d'Enfant, we compute its nonodromy group as in $(2 \rightarrow 3)$. John Voight and others $[8]$, , 11] hav
(3) ... To Monodromy Groups. Label the edges from 1 through N. Since the compact, connected surface X is oriented, read off the labels
counter-clockwise of the edges incident to each vertex $P \in B(P \in W$ counter-clockwise of the edges incident to each vertex $P \in B(P \in W$ eespectively) to find the integers $B_{P, 1}, B_{P, 2}, \ldots, B_{P, e_{P}}$
$\left(W_{P, 1}, W_{P, 2}, \ldots, W_{P, e_{P}}\right.$, respectively). Then the permutations

$$
\begin{aligned}
\sigma_{0} & =\prod_{P \in B}\left(B_{P, 1} B_{P, 2} \cdots B_{P, e_{P}}\right) \\
\sigma_{1} & =\prod_{P \in W}\left(W_{P, 1} W_{P, 2} \cdots W_{P, e_{P}}\right)
\end{aligned}
$$

$$
\sigma_{\infty}=\sigma_{1}^{-1} \circ \sigma_{0}^{-1}
$$

form the desired triple ($\sigma_{0}, \sigma_{1}, \sigma_{\infty}$) which satisfies $\sigma_{0} \circ \sigma_{1} \circ \sigma_{\infty}=$ Mark van Hoeij [5], [6] has code which does this very quickly.
(4) ... To Degree Sequences. Once we have the monodromy group $\left(\sigma_{0}, \sigma_{1}, \sigma_{\infty}\right)$, we compute the Degree sequence \mathcal{D} as in $(3 \rightarrow 4)$.

(3) From Monodromy Groups

(1) ... To Belyĭ Maps. John Voight and his graduate students [8], [11] have this implemented this step.
... To Dessin d'Enfants. Express the three given permutations as a product of disjoint cycle.

$$
\begin{aligned}
\sigma_{0} & =\prod_{P \in B}\left(B_{P, 1} B_{P, 2} \cdots B_{P, e_{P}}\right) \\
\sigma_{1} & =\prod_{P \in W}\left(W_{P, 1} W_{P, 2} \cdots W_{P, e_{P}}\right) \\
\sigma_{\infty} & =\prod_{P \in F}\left(F_{P, 1} F_{P, 2} \cdots F_{P, e_{P}}\right)
\end{aligned}
$$

Place $|B|$ vertices P on X and color them "black", then draw e_{P} edges adjacent to each $P \in B$. Going counter-clockwise, label these edges the
integers $B_{P 1}, B_{p 2}, \ldots, B_{P}$. Similarly, place $|W|$ vertices P on X integers $B_{P, 1}, B_{P, 2}, \ldots, B_{P, e_{P}}$. Similarly, place $|W|$ vertices P on X
and color them "white", then draw e_{P} edges adjacent to each $P \in W$. Going counter-clockwise, label these edges the integers $W_{P, 1}, W_{P, 2}, \ldots, W_{P, e_{P} \text {. }}$. Connect the edges with the same integer label,
then move the vertices $P \in B \cup W$ as necessary so that there $|F|$ hen move the vertices $P \in B \cup W$ as necessary so that there are $|F|$ faces. This is implemented in Sage
(4) \ldots To Degree Sequences. Express the three given permutations as a product of disjoint cycles as above. The desired degree sequence is that multiset formed by the lengths of the cycles, that is,
$\mathcal{D}=\left\{\left\{e_{P} \mid P \in B\right\},\left\{e_{P} \mid P \in W\right\},\left\{e_{P} \mid P \in F\right\}\right\}$,
(4) From Degree Sequences
(1) \ldots To Belyĭ Maps. Compute the monodromy group as in $(4 \rightarrow 3)$. Then compute the Belyı map as in $(3 \rightarrow 1)$.
(2) \ldots To Dessin d'Enfants. Once we have the monodromy group as in $(4 \rightarrow 3)$, then we can compute the Dessin d'Enfant as in $(3 \rightarrow 2)$.
(3) \ldots To Monodromy Groups. Search through all triples $\left(\sigma_{0}, \sigma_{1}, \sigma_{\infty}\right)$ disjoint cycles as above and which satisfies $\sigma_{0} \circ \sigma_{1} \circ \sigma_{\infty}=1$.

Dessin Explorer
http://vww. math purdue ad/ evoins/notes/dessin explorer caf

References

[1] Antoine D. Coste, Gareth A. Jones, Manfred Streit, and Jïrgen Wolfart 1] Antoine D. Coste, Gareth A. Jones, Manfred Streit, and Jürgen Wolfart, Vol. 51 (2): 289-99. 2009.
[2] John E. Cremona and Thotsaphon Thongjunthug, "The complex AGM, periods of elliptic curves over \mathbb{C} and complex elliptic logarithms https://arxiv.org/abs/1011.0914
[3] Noam Elkies, "Elliptic Curves in Nature"
http://www.math.harvard.edu/~elkies/nature. html
[4] Ernesto Girondo and Gabino González-Diez, "Introduction to Compact Riemann Surfaces and Dessins d'Enfants." Cambridge University Press (London Mathematical Society Student Texts, Vol. 79). 2012
[5] Mark van Hoeij and Raimundas Vidunas, "Algorithms and differential 15) Mark van Hoeij and Ra'
relations for Bely f functions,"
https://arxiv.org/abs/1305.7218
6] Mark van Hoeij and Raimundas Vidunas, "Computation of Genus 0 [6] Mark van Hoeija and Raimundas Vidunas, "Computatio
Bely functions." Mathematical software-ICMS 2014: $92-98$.
[7] Lily S. Khadjavi and Victor Scharaschkin, "Belyĭ Maps and Elliptic Curves". Preprint.
http://myweb.lmu.edu/lkhadjavi/BelyiElliptic.pdf
$[8]$ Michael Klug, Michael Musty, Sam Schiavone, and John Voight, "Numer cal calculation of three-point branched covers of the projective line"

9] Gerhard Ringel, "Das Geschlecht des vollständigen paaren 9] Gerhard Ringe, "Das Geschlecht des volstandigen paaren
Graphen."Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, Vol. 28: 139-150. 1965.
[10] Joseph H. Silverman, "The Arithmetic of Elliptic Curves." Graduate Texts in Mathematics (Springer). 2009.
[11] Jeroen and Sijsling and John Voight, "On Computing Bely̌ Maps." https://arxiv. org/abs/1311.2529
12] Leonardo Zapponi, "On the Belyi Degree(s) of a Curve Defined Over a Number Field."
https://arxiv.org/abs/0904.0967
Acknowledgements

- Dr. Edray Herber Goins
- Abhishek Parab
- Dr. Gregery Buzzard / Department of Mathematics
- College of Science
- National Science Foundation (DMS-1560394)

